Incorporating sustainability into assessment and remediation of contaminated sites in Finland

The 11th ICCL meeting, 9.10.2013, Durban

Jussi Reinikainen, SYKE

Contents of presentation

- Overview of practices in Finland
- Updated Finnish guidelines on risk assessment and management
 - Revisions on risk assessment guidelines
 - Sustainable risk management and remediation
 - Generic recommendations for promoting sustainability
- Conclusions

Finland

- Nordic country with 5 million people
- What are we known for?

kimiraikkonenspace.com

www.kimiraikkonen**space**.com by evenstarsaima

okiamobileptonedetail.blogspot.com

The second secon

Development of regulations and practices in Finland

- 1989-1994 -> First national inventory of potentially contaminated sites
- 1993 -> Waste Act
 - Soil contamination and liabilities defined
 - Promotion of sustainable development already generic objective...
- 1994 -> Generic/land-use related (unofficial) guideline values
 - Risk basis not reported -> unclear conception of risks; over-conservative decisions
 - Remediation to guideline values by excavation a "rule"
- 2000 -> Environmental Protection Act
 - Regulation of contamination/pollution integrated under one law
 - Specific section and articles on soil and groundwater contamination
 - Sustainability still key objective
- 2007 -> Decree on Assessment of Soil Contamination and Remediation Need
 - Legal basis and general requirements for risk assessment (RA)
 - Risk-based guidelines values and separate risk assessment guidelines
- Today: remediation still mainly based on GVs and excavation
 - Risk-based remediation goals and in situ / on site remediation < 10%
- → 2014 -> Updated guidelines on RA and sustainable risk management
 - 2015? -> Decree on reuse of excavated soil

Risk assessment and management in Finland – updated ministry guidelines

- Objectives: to increase 1) quality and appropriate use of risk assessment and 2) sustainability in risk management/remediation
- 1) Consistent and justified site-specific risk assessments (RA)
 - Legal framework exists (e.g. Decree 214/2007) and RA is compulsory
 - Improvements needed in the appropriate use of RA
 - Recognition of the limitations of RA
- 2) Maximizing the net-benefits of remediation
 - Generic legal objectives for sustainability exist (not targeted at site remediation)
 - Avoiding unnecessary remediation
 - Selection of the most appropriate methods, when remediation is necessary
 - → Providing necessary risk reduction while minimizing the negative impacts of the selected actions

Revisions on risk assessment guidelines – the ones affecting also sustainability

- Common interpretation of important articles in the law
 - Including key definitions and terms not clearly defined in legislation
 - RA always needed when contamination or potential contamination is evaluated
- Detailed description of RA methodology and harmonization of certain elements
 - More emphasis on proper site investigations and conceptual model
 - Quantitative measurements/estimates of effects/risks always required
 - Assessment of risks to the quality of the environment always required
 - Common reference values for the protection of human health and the quality of groundwater, surface water and indoor air
 - National default values for certain exposure parametres
 - More detailed instructions for using guideline values
 - Recommendations and checklists for documentation
- → From biased to representative sampling
- → From (over) conservative and somewhat unclear RA to realistic, transparent and consistent RA
- → From unfounded to justified and defensible decicions
 - → From impractical to sustainable remediation

Representative sampling – commonly neglected basics

- Basis for reliable RA and justified risk management decisions
- Setting clear objectives
 - What are the exact questions to which you want answers from sampling?
 - Representative for one question is often not respresentative for another
 - → Different sampling plan for different questions/purposes
- Defining proper "decicion units" (= sampling units)
 - What is the population of interest defined by your questions?
 - Smallest unit of importance to decision-making (e.g. exposure area)
 - In RA sampling targeted at exposure and transport routes or receptors
 - → Exact delineation of area/mass/volume of soil, water, air, biota etc.
- Ensuring sufficient quality assurance
 - How reliable do your results have to be (acceptable sampling error)?
 - Tackling the matrix heterogeneity in space (and in time)
 - Using statistics doesn't help if sampling isn't representative...
 - → Selection of appropiate sampling design (e.g. discrete vs. composite or multiincrement samples; QA samples, proper pretreatment and analysis etc.)
- → When sampling can be considered as representative, average concentration of a DU can be used for RA
- → Chasing "hot spots" is often not practical or even necessary

Sustainable risk management and remediation – definitions in the Finnish context

Sustainability

- Generic objective in environmental legislation
- Balancing between environmental, economic and social considerations
- Evaluated on local, regional, national or global level

Sustainable remediation

- Maximizing net-benefits of remediation
- Evaluated on local/site level, when remediation need has been confirmed
- Selection of the most appropriate, technically feasible, methods
- Optimization of the remedial design

Sustainable risk management

- Sustainable remediation + other actions for managing risks (e.g. relating to land use)
- Should also be evaluated on regional level

Framework for decision-making – combining multiple factors and stakeholder views

²⁾ e.g. employment, image and valuation aspects, cultural values, attractiveness of the area

Assessment of sustainability in remediation

- Integrated part of remediation planning
 - Liable party for remediation evaluates sustainability before final selection of methods
 - Acceptance by authority in administrative decision regarding remediation
- Optimization of environmental, economic and social components
 - Many factors reflect sustainability to opposite directions or on different levels:
 e.g. future liabilities on site vs. overall environmental impacts with excavation
 - Transparent and justified value judgement and stakeholder involvement required
 - Decision always a compromise between different views
 - Effects during the whole life cycle of a project should be considered
- Qualitative or quantitative assessment based on defined indicators
 - Process itself more important than the tools used
 - Qualitative comparisons often sufficient enough
 - Thorough quantitative assessment mainly on larger sites with big impacts

Generic recommendations on sustainable risk management and remediation

Objectives

- To promote sustainable practice (even on sites where site-specific sustainability assessments are not being done)
- To increase consistency in decisions
- Sustainability pre-evaluated for certain situations in decision-making
 - 9 indentified situations or factors with associated recommendations
 - Based on what was considered to lead to more sustainable practice
 - Value judgement integrated in recommendations
 - Existing national practices and conditions taken into account
 - Prepared in co-operation with many stakeholders
 - Recommendations consider both risk assessment and risk management
- Planning state of site important starting point
 - Land use change and redevelopment/construction plans main drivers for remediation in Finland
 - Recommendations given for already built sites and sites under redevelopment
- Recommendations shall be considered, but applied case-by-case
 - Not legally binding, but broadly agreed
 - Some recommendations partly overlapping

Generic recommendations concern...

- 1. Possibilities in regional land use planning
- 2. Suitability of risk assessment regarding land use
- 3. Timing of remediation with respect to site redevelopment
- 4. Clean enough top soil on redevelopment sites
- Contaminants of concern
- 6. Applicability of *in situ* ja on site techniques
- 7. Reuse potential of excavated soils
- 8. Treatment methods for excavated soils
- 9. Stakeholder participation

Recommendations 1/3

- Sustainability in land use planning
 - Risk management on site or regional level, before remedial decisions
 - Contamination taken into account early enough; siting activities, avoiding unnecessary remediation, reuse of excavated soils etc.
 - → Sustainability assessment should always be part of regional planning and selection of risk management options
- Applicability of risk assessment; built vs. redevelopment site
 - Suitability of RA (risk-based remediation goals) on site, where planning is unfinished or realization of redevelompent/construction works is uncertain
 - → Requires an accepted town/city plan or draft plan
 - → Assessing different scenarios (worst-case) also possible
 - RA is always fit for already built/existing sites
 - → Targeted and validated assessment possible (e.g. targeted measurements)
- Timing of remediation
 - Remediation need ≠ urgency of remediation
 - → If possible, remediate within construction works or redevelopment activities

Recommendations 2/3

- Clean-enough surface soil
 - Surface soil has a special role: risk potential / soil use / perceptions etc.
 - Includes rather strong value judgement
 - → Redevelopment sites: remediation based on threshold and guideline values (0,5 -1 m). Recommendation does not include unsensitive land use, paved areas and "low-risk metals"
 - → Built sites: site-specific RA
- Contaminants of concern
 - Elimination of PBT-substances = "phase-out"
 - Includes rather strong value judgement
 - → Redevelopment sites: removal and destruction (when C > upper GV)
 - → Built sites: site-specific RA with special terms (removal, when soil is excavated e.g. due to construction)
 - Volatile compounds
 - → Redevelopment sites: removal under buildings + management of vapors
 - → Built sites: site-specific RA; soil air/indoor air measurements, modeling
 - NAPI
 - → Removal of free phase NAPL (when feasible)

Recommendations 3/3

- Selection of remediation methods
 - → Evaluation of the potential to use *in situ* and on site techniques
- Reuse of excavated soils
 - Basic principles for soil reuse presented
 - Specific regulation on soil reuse under preparation
 - → Evaluation of reuse potential on site or outside the site
- Requirements for excavated soils
 - Changes in the environmental permits of the treatment facilities needed
 - → Elimination for organic compounds (when feasible)
 - → Evaluation of the overall environmental effects of treatment
- Participation and communication
 - Regarding both the selection of methods and the communication afterwards
 - → Involment of important stakeholders to decision-making process

Conclusions

- Reliable risk assessment prerequisite to succesful risk management
 - Clear objectives
 - Appropriate assessment process (incl. representative sampling)
 - Transparent documentation
 - → Revised guidelines will increase reliabilty in risk assessments
- Sustainaible risk management and remediation a common goal
 - Justified use of risk assessement
 - Selection of remediation methods by multiobjective sustainability assessment
 - Optimization of the selected methods to further increase sustainability
 - → Revised guidelines with generic recommendations will promote sustainability in risk management and remediation
- → Overall effects on practices remain to be seen...

Thank you!

jussi.reinikainen@ymparisto.fi

