

environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA**

Soil Environmental Standards/Screening Values in China

Guoqing WANG, Yanhong SHAN

Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China (NIES)

Contents

The GB15618-1995 Standards

- Analysis on Urgent needs for Revision
- A Proposed Framework of SESs
- Methodologies for Derivation
- Concluding remarks

Land/Soil related Laws & Regulations

- Land Administration law (1986, 1998, 2004)
- Agricultural law (1993, 2002)
- Forest Law (1984, 1998)
- **Grassland** Law (1985, 2002)
- Regulation on Protection of Basic Agricultural Fields (1998)
- Land Reclamation Regulations (2011)
- Quality and Safety of Agricultural Products Law (2006)

Environmental Legal System in China

- Environmental Protection Law (1989, in revision)
- Air Pollution Prevention and Control Law (1987, 1995, 2000)
- Water Pollution Prevention and Control Law (1984, 1996, 2008)
- Solid Waste Pollution Prevention and Control Law (1995, 2004)
- Radioactivity Pollution Prevention and Control Law (2003)
- Environmental Impact Assessment Law (2002)
 - Recent decision to have in the near future:

—— Soil Environmental Protection Law (in preparation)

—— Start from late 2012

Environmental Quality Standards in China

- Ambient Air Quality Standards (GB 3095-1996, GB 3095-2012)
- Indoor Air Quality Standards (GB/T 18883-2002)
- Surface Water Environmental Quality Standards (GB 3838-2002)
- Groundwater Quality Standards (GB/T 14848-1993)
- Sea Water Quality Standards (GB 3097-1997)
- Water Quality Standard for fishery (GB 11607-1989)
- Standards for Irrigation Water Quality (GB 5084-1992)

Environmental Quality Standards for Soils (GB 15618-1995)

The GB 15618-1995 standards

- —Derived/proposed by NIES
- ——1987: initiation of a research project
- ——1989: development of the standard system;
- ——1 July 1995 : issued by **MEP** (previous SEPA)
- -----1 March 1996: put into effect till now

Aims

-----To prevent soil pollution

——To protect soil functions, eco-environment, agricultural &forestry production and human health

Scope

——farm land, vegetable and tea producing field, orchard ——soil, pasture and natural reserved area

Classification of standard values

— 3 classes

Factors considered

—soil pH, CEC

Class-1 standards:

—Soil background level

—Natural conserved area, drinking water source area etc.

——Nationally wide background values based

—Sampling locations: more than 4000 samples

—Described by Log-Normal distribution

Class-2 standards:

---Ecological and environmental effects based

—Farm land, fields of vegetable and tea production, orchard soil

——Healthy plant growth and safe food quality

—No potential effects on water bodies

Class-3 standards:

—Soil of higher adsorption capacity/background levels;

——Healthy growth of trees/plants, no hazard to environment

——Derivation method similar as Class-2 standards;

——Use experimental data based on soil of higher adsorption capacity and artificially contaminated soils.

Elements considered for derivation of GB15618

Contaminants	Class-1		Class-3		
	Background	<6.5	6.5 - 7.5	>7.5	>6.5
Cd	0.20	0.30	0.30	0.60	1.0
Hg	0.15	0.30	0.50	1.0	1.5
Ni	40	40	50	60	200
As Paddy	15	30	25	20	30
Dry land	15	40	30	25	40
Cu ^a Agri.	35	50	100	100	400
Frui.	-	150	200	200	400
Pb	35	250	300	350	500
Cr ^b Paddy	90	250	300	350	400
Dry land	90	150	200	250	300
Zn	100	200	250	300	500
HCH ^c	0.05		0.50		1.0
DDT ^c	0.05		0.50		1.0

^a: 'Agri.' represents agricultural soils, and 'Frui.' represents fruit farm soils.

^b: In case soil CEC < 5cmol(+) kg⁻¹, the standard values will be half values of the listed.

^c: HCH (hexachlorocyclohexane), values are the sum of 4 isomers;

^d. DDT (Dichloro-diphenyl-trichloroethane), values represent the sum of DDT, DDD and DDE.

Evaluation of the GB15618-1995

- been an useful tool for soil environmental management in China for long time;
- more suitable for management of agricultural soil quality
- supporting scientific data is limited for the derivation;
- Iack of consideration on human exposure risk;
- less contaminants of concern (no VOCs addressed);
- urgent needs for revised SEQSs i.e.
 - —more contaminants
 - -----various land uses, agricultural, residential, industrial...

Contents

The GB15618-1995 Standards

Analysis on Urgent Needs for Revision

A Proposed Framework of SESs

Methodologies for Derivation

Soil Environ. Policy/Regulations in China

- 6 June, 2008: 《Guidance on Enhancing Affairs on Soil Pollution Control , Prevention and Treatment》 (MEP-No.2008.48) ;
- 15 December, 2009: 《Ministerial Ordinance on Management of Contaminated Site and Soil Environment》 (Draft for approval);
- 27 November, 2012 : 《Circular on Enabling Environmental Safety during Redevelopment of Industrial Sites》 (MEP-No.2012.40)
- 23 January, 2013 : 《Circular on Recent Arrangement on Soil Environmental Protection and Integrated Remediation/Treatment》 (China State Council No.2013.07)
- 19 April, 2013 : 《Circular on Implementation of the China Coucil Circular CSC-No.2013.07》 (MEP-No.2013.46)

23 January, 2013 : the China State Council Circular

- (No.2013.07) clarifies main tusks as following :
- -----Defining priority protection areas, i.e. cultivated land
- -----Enhancing risk control of contaminated soil environment
- ——Carrying out soil pollution control and remediation
- ——Improving capability of soil environmental monitoring and supervision
- ——Accelerating development of soil environmental protection engineering program

Urgent Needs for Protecting Soils

Agricultural/natural soil

- ---- large area as an agricultural country
- ---- important for safe quality of agricultural produces
- Soil in certain area might be contaminated due to various reasons
- Priority is given to "Protection of soil quality"
- Risk control and management in case of slightly contaminated agricultural soils

Urgent Needs for Risk Management

industrial sites/soils

— also known as "<mark>brown field</mark>"

- including Chemical/pesticides production, oil/petroleum industry, mining sites, gas works etc.
- -Soil has been heavily contaminated by various types of chemicals
- Lack of information on site history
- High economic value for redevelopment (residential use etc.)
- Risk management process: site investigation, risk assessment, and remediation when necessary

Contents

The GB15618-1995 Standards

Analysis on Urgent Needs for Revision

Proposed Framework of SESs

Methodologies for Derivation

Proposed Framework of SEQSs/SSVs

Proposed Framework of SESs

Purpose

-general protection of uncontaminated (natural/agricultural) soils

Derivation

---extrapolate with statistical method with support of soil environmental backgrounds data

— take into account local background and can be area specific SEQSs

Application

- For sustainable soil quality management

——lower than SEQSs: uncontaminated level and no actions is needed

SSVs for Screening Potential Risk/COCs

Purpose

----Screening of potential risks and COCs associated with contaminated soils

Derivation

- —— derive risk assessment methods based on generic exposure scenarios

Application

----ONLY used for "historical contaminated sites", never as up limits of contaminants

——lower than SSVs, no significant risk,

higher than SSVs, unacceptable risks potentially, further action is needed, i.e. investigation.

22

Site-specific SRLs for Risk Management

Purpose

—for sustainable remediation/redevelopment of historical contaminated sites/soils

Derivation

----scientific methods (HRA, ERA), while taking into account other factors, i.e. technological and economic feasibilities

-----for a specific site/soil and a defined land use

Application

----lower than SRLs, acceptable risk level is achieved after remediation

----higher than SRLs, further remediation actions in need

Contents

The GB15618-1995 Standards

Analysis on urgent needs for revision

A proposed framework of SSVs

Methodologies for Derivation

HRA methodology

ERA methodology

Contents

The GB15618-1995 Standards

Analysis on urgent needs for revision

A proposed framework of SSVs

Methodologies for Derivation

Concluding remarks

Concluding remarks

Big challenges:

- 1) sustainable management of clean (natural, agricultural) soils,
- 2) management of slightly contaminated soils;
- 3) remediation of heavily (unacceptable risk) contaminated soils;

Urgent needs:

——A suitable framework of Soil Environmental Standards meeting needs of soil environmental management;

• The proposed framework integrating:

- 1) SEQSs for sustainable soil quality management,
- 2) SSVs for screening of potential contamination risks/COCs, and
- 3) SRLs for risk management and remediation of contaminated soils;

Further studies:

- 1) methodology/guidelines for deriving of SEQSs/SSVs/SRLs
- 2) scientific research/survey data supporting SEQSs derivation

Thank You for the Attention!

